Supplementary Information for Identification of key interactions between SARS-CoV-2 Main Protease and inhibitor drug candidates Ryunosuke Yoshino^{1,2†}, Nobuaki Yasuo^{3†}, Masakazu Sekijima^{3*} **Affiliations** ¹Transborder Medical Research Center, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki 305- 8577, Japan ²Center for Computational Sciences, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki 305- 8577, Japan ³Advanced Computational Drug Discovery Unit, Tokyo Institute of Technology, J3-23-4259 Nagatsutacho, Midori-ku, Yokohama 226-8501, Japan † These authors contributed equally to this study. *Corresponding author E-mail: sekijima@c.titech.ac.jp **S**1 Figure S1. Pharmacophore model candidates constructed by SARS-CoV M^{pro}-inhibitor complex structure. Four features of inhibitors that bind to SARS-CoV M^{pro} were extracted. Blue spheres indicate H-bond donor (HBD), and red spheres indicates H-bond acceptor (HBA). Pharmacophore models were aligned with 2A5I ligand (Grey stick model). A: Used model (screen score: 5.34). B: Unused model (screen score: 5.07). Figure S2. Root mean square deviations of SARS-nCoV-2 M^{pro} C_{α} atoms in the MD simulations. A: 2A5I ligand complex model, B: 2OP9 ligand complex model, C: Indinavir complex model Figure S3. Root mean square deviations of ligand atoms in the MD simulations. A: 2A5I ligand, B: 2OP9 ligand, C: Indinavir Figure S4. Root-mean-square fluctuation of amino acid residue in the MD simulations. A: 2A5I ligand, B: 2OP9 ligand Figure S4. Continued. C: Indinavir, D: 6LU7 apo form Figure S5. Timeline representation of the interactions and contacts (H-bonds, Hydrophobic, Ionic, Water bridges). This figure shows which residues interact with the ligand in each trajectory frame. Some residues make more than one specific contact with the ligand, which is represented by a darker shade of orange. A: 2AI5 Ligand. Figure S5. Continued. B: 2OP9 Ligand. ## C Figure S5. Continued. C: Indinavir.